ROLL		
NUMBER		

INDIAN SCHOOL MUSCAT FIRST PREBOARD EXAMINATION 2022-2023 **MATHEMATICS (Standard)-041**

TIME ALLOTED CLASS: X : 3 HRS. DATE: 09.01.2023 **MAXIMUM MARKS: 80**

GENERAL INSTRUCTIONS:

- All Questions must be attempted, however there are internal choices for 2 marks, 3 marks3 and 5 marks questions.
- Section A has 20 Questions of 1 mark each.
- Section B has 5 Questions of 2 marks each.
- Section C has 6 Questions of 3 marks each.
- Section D has 4 Questions of 5 marks each.
- Section E has 3 case-based Questions of 4 marks each.
- Do all the working neatly in the working column.
- Any rough work elsewhere should be canceled.
- Give proper labeled diagrams wherever necessary.

SECTION A - Multiple Choice Questions – (1 mark each)

1.	If α and β a	re the zeroes of poly	momial p(x) = px	$x^2 - 2x + 3p \text{ ar}$	$\operatorname{nd} \alpha + \beta =$	$\alpha\beta$ then the valu	e of p
	is						

- (b) $\frac{2}{3}$ (c) $\frac{-1}{3}$ (d) $\frac{1}{3}$
- The pair of equations x + 2y = 8 and 2x + 4y 16 = 0 is 2.
 - (a) consistent

- (b) consistent and dependent
- (c) inconsistent
- (d) none of these

3. For any natural number n,
$$6^n - 5^n$$
 will always end with

- (a) 1
- (b) 2
- (c) 3

4. If
$$x - 4 = \frac{12}{x}$$
, $x \ne 0$ then the value of x is
(a) 4, 3 (b)-4, 3 (c) 6, -2 (d) - 6, 2

5. If the HCF and LCM of two numbers are respectively
$$(n-1)$$
 and $(n^2-1)(n^2-4)$ then the product of the two numbers will be

(a)
$$(n^2-1)(n^2-4)$$

$$(b) (n^2-1)(n^2-4)(n^2+1)$$

(a)
$$(n^2 - 1)(n^2 - 4)$$
 (b) $(n^2 - 1)(n^2 - 4)(n^2 + 1)$ (c) $(n + 1)(n^2 - 4)(n - 1)^2$ (d) $(n - 1)(n^2 + 4)(n + 1)^2$

(d)
$$(n-1)(n^2+4)(n+1)^n$$

6.	The perpendi axis at	cular bisector	of the line se	gment joining	the points A	A (2, 3) and B	(5, 6) cuts the y
		(b) (0, 8)	(c) (0, -8)	(d) (-8, 0)			
7.	If $\sec^2 \theta \ (1 + \sin^2 \theta)$			(d) 1			
8.	ΔABC is such perimeter of Δ (a) 7.5cm	∆DEF is	cm, BC = 2cn (c) 22			BC~∆DEF and	d EF= 4cm then
9.		_	of a circle where cm^2				
10.	Given that <i>si</i>	$n\theta = \frac{a}{b}$, then	$\cos\! heta$ is equal	to			
	(a) $\frac{b}{\sqrt{b^2-a^2}}$	(b) $\frac{b}{a}$. (c	$)\frac{\sqrt{b^2-a^2}}{b}$	(d) –	$\frac{a}{b^2-a^2}$	
11.	(a) congr	uent but not s	E, ∠F = ∠C ar similar nor similar	(b) similar bu	ut not congri	uent	5
12.			s from an exte	ernal point P t	o a circle wit	th centre O.	
	(a) 35°	, then ∠QPR i (b) 55		(c) 70°		$(d)80^{0}$	
13.			lom from the				, 6.
	(a) $\frac{9}{13}$	$(b)\frac{3}{13}$		(c) $\frac{8}{13}$		(d) $\frac{7}{13}$	
14.	In a circle wit (a) $10\pi \ cm^2$	h centre O an (b) 6 π		AB is a chord (c) $8 \pi cm^2$	_	m. Then area (d) $5 \pi cm^2$	of sector AOB is
15.	If $\cos \theta = \frac{1}{2}$, the	hen the value	of $\frac{2 \operatorname{Sec}\theta}{1 + \tan^2\theta}$ is				
	If $\cos \theta = \frac{1}{2}$, the $(a)\frac{1}{2}$	(b) $\frac{-1}{2}$	(c) 1	(d)-	-1		
16.	The volume of (a) 89.83 <i>cm</i> ³	of the largest r (b) 98.8	ight circular c 3 <i>cm</i> ³		pe cut out from (d) 9		dge 7cm is
17.	If the mode o	f a data is 45.	mean is 27 the	en the median	is		

(c) 46

(d)33

18. If the mean of the frequency distribution is 7.5 and $\sum f_i x_i = 120 + 3k$, $\sum f_i = 30$ then k is equal to

(a) 30

(b) 35

(c) 40

(d) 45

19. **Assertion:** If the coordinates of the midpoints of the sides of the sides AB and AC of \triangle ABC are D (3, 5) and E (-3, -3) respectively then BC = 20 units.

Reason: The line joining the midpoints of two sides of a triangle is parallel to the third side and is equal to half the length of it.

- (a) Both assertion and reason are correct and reason is the correct explanation for the assertion.
- (b) Both assertion and reason are correct and reason is not the correct explanation for the assertion.
- (c) Assertion is correct but reason is false.
- (d) Assertion is false but reason is correct.
- 20. **Assertion:** \sqrt{x} is an irrational number, where x is a prime number. **Reason:** Square root of any prime number is an irrational number.
 - (a) Both assertion and reason are correct and reason is the correct explanation for the assertion.
 - (b) Both assertion and reason are correct and reason is not the correct explanation for the assertion.
 - (c) Assertion is correct but reason is false.
 - (d) Assertion is false but reason is correct.

SECTION- B (5 questions of 2 mark each)

- 21. In the figure (a) below, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meet QR at P. If PT = 3.8 cm, find the length of QR.
- 22. In figure (b) below, O is the centre of the circle, AB is a chord and AT is the tangent at A. If $\angle AOB = 100^{\circ}$, then calculate $\angle BAT$.

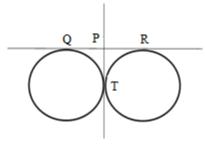


fig (a)

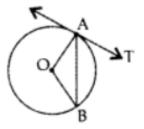
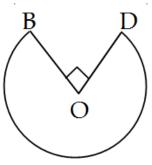


fig (b)

- 23. Find the value of a so that the point (3, a) lies on the line represented by 2x 3y = 5.
- 24. Evaluate $tan^2 45^0 sec^2 60^0 + cosec^2 45^0 tan 60^0$

OR


If $\sec \theta + \tan \theta = x$, then find the value of $\sec \theta$ in terms of x.

25. In the given figure (on the right), the shape of a table top in a restaurant is that of a sector of a circle with centre O and $\angle BOD = 90^{\circ}$. If OB = OD= 60cm, find the perimeter of the table top.

(Use $\pi = 3.14$)

In a circle of radius 10.5 cm, the minor arc is one fifth of the major arc. Find the area of the sector corresponding to the major arc.

SECTION- C (6 questions of 3 marks each)

- Prove that $7\sqrt{2}$ 3 is an irrational number. 26.
- 27. From a pack of 52 playing cards jacks, queens, kings and aces of red colour are removed. Find the probability that the card drawn is

(i) a black queen

(ii) a red card

(iii) a face card

28. For what values of a and b does the following pair of linear equations have an infinite number of solutions?

$$2x + 3y = 7$$
 and $a(x + y) - b(x - y) = 3a + b - 2$

If 217x + 131y = 913, 131x + 217y = 827, then find the value of x and y

- If $x = r \sin A \cos B$, $y = r \sin A \sin B$ and $z = r \cos A$, Show that $x^2 + y^2 + z^2 = r^2$. 29.
- If α and β are the zeroes of the quadratic polynomial $p(x) = 2x^2 4x + 5$, 30. then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
- In fig (c), XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with 31. point of contact C interesting XY at A and X'Y' at B, what is the measure of ∠AOB?

OR

If from an external point P of a circle with centre O two tangents PQ and PR are drawn such that $\angle QPR = 120^{\circ}$. Prove that 2PQ = PO [Refer fig (d)]

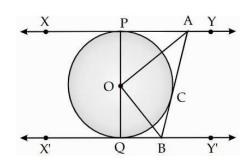
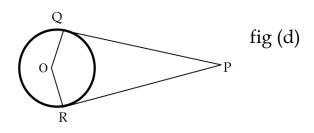



fig (c)

SECTION- D(4 questions of 5 marks each)

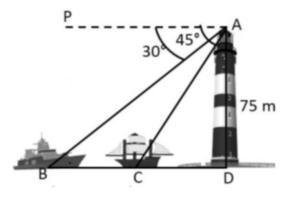
- 32. ABCD is a trapezium with $AB \parallel DC$. E and F are points on non-parallel sides AD and BC respectively such that EF is parallel to AB. Show that $\frac{AE}{ED} = \frac{BF}{FC}$.
- 33. A man drives his car on a highway where the speed limit is 60km/hr. He has to cover a distance of 240km at a uniform speed on this road. If he increases his speed by 20km/hr, he can reach his destination one hour earlier. What is his original speed at which he travels?
- 34. A building is in the form of a right circular cylinder surmounted by a hemispherical dome. The base diameter of the dome is equal to $\frac{2}{3}$ of the total height of the building. Find the height of the building if it contains $67\frac{1}{21}m^3$ of air.

OR

Due to sudden floods, some welfare association jointly requested the government to get 100 tents fixed immediately and offered to contribute 50% of the cost. If the lower part of each tent is in the form of a cylinder of diameter 4.2m and height 4m with the conical upper part of same diameter but of height 2.8m and the canvas to be used costs Rs100 per m^2 find the amount the associations will have to pay.

35. If the median of the following data is 14.4, find x and y. Given, the total frequency is 20.

Class Intervals	0 - 6	6 - 12	12 - 18	18 - 24	24 - 30
Frequency 4		x	5	y	1

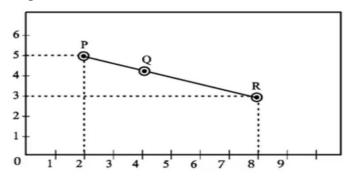

OR

The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Compare and interpret the two measures.

No. of students	15 - 20	20 -25	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50	50 - 55
per teacher								
Number of	3	8	9	10	3	0	0	2
states/U.T.								

SECTION- E (3 questions of 4 marks each)

- 36. A light house is a tower with a bright light at the top and serves as a navigational aid and also warns ships of dangerous areas. In the given figure, a man on top of a 75m high light house is observing two ships approaching towards its base. Observe the figure carefully and answer the following questions.
 - (a) Is $\angle PAB = \angle DBA$? Give reason.
 - (b) Find the distance of ship B from the foot of the light house.
 - (c) What is the distance between the two ships?



Oŀ

What would have been the distance between the two ships if the ships were on either side of the light house?

37. A group of class X students goes to picnic during vacation. There were three different slides and three friends Kevin, Ria and Tania are sliding in the three slides. The position of the three friends shown by P, Q, R in three different slides are given below.

- (a) Find the distance PQ.
- (b) Find the midpoint of PR.
- (c) Find the coordinates of the point on X axis which is equidistant from P and Q.

OR

Find the coordinates of the point B which divides the line segment internally in the ratio 2:1

38. Aditya is celebrating his birthday. He invited his friends. He bought a packet of toffees which contains 1230 toffees. He arranged the candies such that in the first row there are 3 candies, in the second there are 5 candies, in the third there are 7 and so on.

- (a) Find the difference in number of candies placed in the 9^{th} row and 4^{th} row.
- (b) If Aditya decided to make 15 rows, then how many total candies will be placed by him in the same arrangement.
- (c) Find the total number of rows of candies.

OR

How many candies are there in the last row?

****END OF THE QUESTION PAPER****